
A Θ(n) Approximation Algorithm for 2-Dimensional

Vector Packing

Ekow Otooa, Ali Pinarb,∗, Doron Rotema

aLawrence Berkeley National Laboratory
bSandia National Laboratories

Abstract

We study the 2-dimensional vector packing problem, which is a generalization

of the classical bin packing problem where each item has 2 distinct weights

and each bin has 2 corresponding capacities. The goal is to group items into

minimum number of bins, without violating the bin capacity constraints. We

propose an Θ(n)-time approximation algorithm that is inspired by the O(n2)

algorithm proposed by Chang, Hwang, and Park.

Keywords:

Approximation algorithms, Vector packing

1. Introduction

In the classical bin packing problem, we are given a bin capacity, C, a set

of items A = {a1, a2, . . . , an}, and we try to find a minimum numbers bins

B1, B2, . . . , Bm, such that ∪mi=1Bi = A and
∑

aj∈Bi
aj ≤ C for i = 1, . . . ,m.

∗Supported by the DOE Office Science Applied Mathematics Program. Sandia National
Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Email addresses: ekw@hpcrd.lbl.gov (Ekow Otoo), apinar@sandia.gov (Ali
Pinar), rotem@hpcrd.lbl.gov (Doron Rotem)

Preprint submitted to Information Processing Letters February 8, 2011



The vector packing problem is a generalization of this problem to multiple

dimensions. In the d-dimensional vector packing problem, each item has d

distinct weights and each bin has d corresponding capacities. Let aki denote

weight of the ith object in the kth dimension, and let Ck denote the bin

capacity in the kth dimension. The goal is to group items into a minimum

number of bins B1, B2, . . . , Bm such that

∑
aj∈Bi

akj ≤ Ck for i = 1, . . . ,m and for k = 1, . . . , d.

This problem has been the subject of many research efforts. A survey of

these efforts is provided by Lodi, Martello, and Vigo in [1].

In this paper, we study the 2-dimensional vector packing problem. Our

motivation is allocating files to disks, hence the items are files and the two

weights are the size and the load of the file. The load of a file refers to how

much time a server is expected to spend with that file, and depends on access

frequency, as well as file size. The constraints on the bins correspond to stor-

age and service capacity of the disk. The sizes of the problem instances are

extremely large, and excessive computational costs are prohibitive. There-

fore we have to adopt efficient heuristics with small memory footprint and

limited computational overheads.

We propose an in-place Θ(n) approximation algorithm that generates

solutions that use no more than
1

1− ρ
, where ρ is ratio of the maximum

item weight to the corresponding bin capacity, i.e, ρ = max
i,k

aki
Sk

. In [2],

an interesting general solution to the d-dimensional vector packing problem

using linear programming relaxation is presented with a bound of ln d+ 1

2



from optimal. In our case, the cost of implementing an LP based algorithm

is not practical due to the scale of applications we are considering here. Our

work is closely related to the work of Chang, Hwang and Park [3], and we

improve the O(n2) complexity of their algorithm to Θ(n).

2. Notation

Given a set of n items, let si and li denote the two weights of the ith

item. The problem we want to solve is:

Given a list of tuples (s1, l1), (s2, l2), . . . , (sn, ln), and bounds CS and CL.

Find a minimum number sets B1, B2, . . . , Bk, so that each tuple is assigned

to a set Bj, and

∑
(si,li)∈Bj

si ≤ CS and
∑

(si,li)∈Bj

li ≤ CL for j = 1, . . . k

For simplicity, we will normalize CS and CL so they are both equal to 1 and

the si’s and li’s normalized accordingly so that they are fractions of CS and

CL, and are all within the range [0,1].

We say an item is s-heavy if si ≥ li and l-heavy otherwise. We define

ρ as the maximum value among all si and li values. i.e., ρ = max{si, li :

1 ≤ i ≤ n}. A bin Bi is s-complete if its cumulative s-weight, S, satisfies

1 − ρ ≤ S ≤ 1; l-complete, if its l-weight, L satisfies 1 − ρ ≤ L ≤ 1; and

complete if it is both s-complete and l-complete. We will prove that the

number of bins used by the algorithm is within a factor of
1

1− ρ
of the

optimum. Since for most applications ρ� 0.5, the algorithm of [3] is better

3



for our purposes than that of [4] which gives a 2-optimal solution, but runs

in O(n lg n) time.

3. The Algorithm

In this section we present Algorithm 1, which decreases the O(n2) runtime

of the algorithm in [3] to Θ(n). Let S and L denote the sum of s and l-

weights of the items in the current bin. As mentioned earlier, the notion

of bin completeness is central to the algorithm and refers to the fact that a

current bin is sufficiently utilized and can be closed and a new bin started

with a guarantee that the overall bound from optimality will not be violated.

In this algorithm, each bin starts with the addition of the first unassigned

item. At each iteration, the algorithm adds an s-heavy or an l-heavy item

depending on whether L > S or S ≥ L, respectively, This continues until

the bin is s-complete (or l-complete) or the size bound is violated. In [3] it

is shown that once the size bound is violated, the bin can be reduced to be

s-complete (or l-complete), by removing a special item from the bin. A key

contribution in this paper is how to locate that special item in Theta(1) time,

granting an Θ(n) time for the algorithm, as opposed to the O(n2) runtime of

[3] . Exactly one of the functions Pack Remaining S or Pack Remaining L

is called after exiting the while loop when it is known that the remaining

unassigned items are homogeneous such that they are either all s-heavy or

all l-heavy. These functions perform a simple one dimensional bin packing.

In Pack Remaining S, the bins are packed based on the s values and each

bin is packed until it is s-complete before starting a new bin. Similarly, in

Pack Remaining L, packing is based on l values and a new bin is started

when the current bin is l-complete.

Another key contribution is the design of data structures that avoid any

auxiliary storage. Our algorithm is an in-place algorithm, which is important

for massive data sets, and vital for data base reorganization. The algorithm

uses two pointers sp and lp that point to the first unassigned item for which

4



Algorithm 1: Algorithm Pack Disks

Given an array F =〈(s1, l1), . . . , (sN , lN)〉, find D0, D1, . . . , Dq such1

that Di−1 to Di − 1 constitute the i-th bin on the permuted F array
i← 1; S ← s1; L← l1; D0 ← 1; D1 ← 2;2

if S > L then last s ← 1; else last l ← 1;3

sp← find next s(1); lp← find next l(1);4

while lp ≤ N and sp ≤ N do5

if S ≥ L then6

L← L+ llp; S ← S + slp;7

if S > 1 then8

swap(lp, last s); L← L− llast s; S ← S − slast s;9

else10

if sp < lp then11

swap(lp,Di); sp← sp+ 1;12

last l← Di Di ← Di + 1;13

lp← find next l(lp);14

else15

L← L+ lsp; S ← S + lsp;16

if L > 1 then17

swap(sp, last l); L← L− llast l; S ← S − slast l;18

else19

if lp < sp then20

swap(sp,Di); lp← lp+ 1;21

last s← Di; Di ← Di + 1;;22

sp← find next s(sp);23

if S ≥ 1− ρ and L ≥ 1− ρ and Di ≤ N then24

L← lDi
; S ← sDi

; i← i+ 1; Di ← Di−1 + 1;25

if S ≥ L then26

last s← Di; sp← find next s(sp);27

else28

last l← Di; lp← find next l(lp);29

if (sp ≤ N) then Pack Remaining S;30

if (lp ≤ N) then Pack Remaining L;31

5



si ≥ li and li > si, respectively. The function find next s(j) returns the

smallest index i > j of an unassigned item such that si ≥ li and symmet-

rically, find next l(j) returns the smallest i > j such that li > si. The

cumulative sum of si and li values for the current bin are stored in S and

L. The index of the last s-heavy item added to the current bin is stored in

last s, and the last l-heavy item is stored in last l.

Lemma 1. If S≥L and S+slp>1, then S−L ≤ slast s− llast s, where last s

is the index of the last s-heavy item added to the bin.

Proof. Condition S≥L implies that at least one s-heavy item was added to

the current bin, thus last s has been initialized. Let S ′ and L′ be the sum

of s- and l-weights of the items added before last s, and let S̄ and L̄ be the

sum of s- and l-weights of the items added after last s. We know L′ ≥ S ′,

since the algorithm chose to add an s-heavy item, and L̄ ≥ S̄, since we have

been adding l-heavy items after last s. This gives us

(S ′ + S̄)− (L′ + L̄) ≤ 0

(S ′ + S̄ + slast s)− (L′ + L̄+ llast s) ≤ slast s − llast s

S − L ≤ slast s − llast l

Lemma 2. If S ≥ L and S+slp > 1, then the current bin will be complete

after removing last s and adding lp.

Proof. This results is already proven in [3].

Lemma 3. If L ≥ S and L + lsp > 1, then L − S ≤ llast l − slast l, and the

current bin will be complete after removing last l and adding sp.

Proof. The proof is based on arguments in proofs of Lemma 1 and Lemma 2.

The previous two lemmas form the algorithmic basis of our algorithm, in the

following lemma we focus on the correctness of our data structures.

6



Lemma 4. After each iteration of the while loop, lp and sp point to, re-

spectively, an l-heavy and s-heavy item with the smallest index ≥ Di. The

pointers last l and last s point to the last s- and l-heavy item in the current

bin, respectively.

Proof. We will only discuss the case S ≥ L, since the other case is symmetric.

Note that min{sp, lp} = Di. That is, either sp or lp points to the first

unassigned item. The execution of the algorithm depends on whether S +

slp > 1 and whether sp < lp. If S + slp > 1, we want to add lp and remove

last s from the current bin. In this case if lp < sp (thus lp = Di), the

algorithm moves last s to the position Di, which subsequently is assigned as

the first item of the next bin within the same iteration on line 23. Therefore,

sp still points to the l-heavy item with the smallest index not currently

assigned, and lp moves to the right item by a call to find next l. If lp > sp,

then the last s item is moved in place of lp, which is ahead of sp. So once lp

moves ahead by a find next call it will find the l-heavy item with the smallest

index not currently assigned.

If S + slp > 1, we need to add lp to the current bin. If lp < sp (thus

Di = lp), then incrementing Di, and then using find next l will be sufficient.

if sp < lp (thus Di = sp), then we need to put lp to replace sp. In this case

incrementing, sp by 1 guarantees that it will be pointing to an s-heavy object

is also the smallest unassigned index.

It is easy to follow that updates on last l and last s are done correctly.

Lemma 5. Algorithm 1 makes 2 scans and uses n+ q data moves, where n

is the number of items to be packed and q is the number of bins used.

Proof. The algorithm uses two pointers lp and sp that read the values of the

data items and they only move forward. At each step of the algorithm, we

either swap an item to position Di or last l (last s). Di can move up to n

7



(the number of items), and each swap with last l (last s) means a bin being

complete by Lemma 2 and Lemma 3 .

Theorem 1. Algorithm 1 runs in O(n)-time to generate a solution with no

more than C∗

1−ρ + 1 bins, where C∗ is value of an optimal solution.

Proof.

Clearly C∗ ≥ max{
∑

(si,li)∈F
si,

∑
(si,li)∈F

li}. On the other hand, by Lemmas

2 and 3, the algorithm packs all subsets Di (except possibly for the last one)

such that exactly one of the following 3 cases occurs:

1. all subsets Di’s are complete

2. all subsets Di’s are s-complete, one or more are not l-complete

3. all subsets Di’s are l-complete, one or more are not s-complete

Under case 1), the theorem follows directly. Under case 2),

CPD ≤ 1 +
1

1− ρ
∑

(si,li)∈F

si ≤ 1 +
1

1− ρ
C∗.

An analogous argument also works under case 3) thus proving our bound.

The linear runtime of the algorithm is an implication of Lemma 5.

4. Conclusions

We studied the 2-dimensional vector packing problem. We described an

in-place, Θ(n)-time approximation algorithm that finds solutions within 1
1−ρ

of an optimal, where ρ is maximum normalized item weight. Our algorithm

also limits the number of item moves to at most n + k, where n is the

number of items and k is the number of bins used. A simple generalization

of our linear time algorithm to 3-dimensional vector packing can be shown

with a bound of 2
1−ρ from optimal. This is done by first running the 2-

dimensional solution on the first two dimensions of each item (ignoring the

8



third dimension) and then applying a one dimensional bin packing algorithm

on the contents of each bin based only on the third dimension. It remains an

open problem whether better bounds are possible with linear time algorithms

where item weights satisfy size constraints.

References

[1] A. Lodi, S. Martello, D. Vigo, Recent advances on two-dimensional bin

packing problems, Discrete Applied Mathematics 123 (1-3) (2002) 379 –

396.

[2] N. Bansal, A. Caprara, M. Sviridenko, A new approximation method for

set covering problems, with applications to multidimensional bin packing,

SIAM J. Comput. 39 (4) (2009) 1256–1278.

[3] S. Y. Chang, H.-C. Hwang, S. Park, A two-dimensional vector packing

model for the the efficiant useof coil cassettes, Computers and Operations

Research 32 (2005) 2051–2058.

[4] H. Kellerer, V. Kotov, An approximation algorithm with absolute worst-

case performance ratio 2 for two-dimensional vector packing, Operations

Research Letters 31 (2003) 35–41.

9


